

South Tyneside Hospital, South Shields Phase 2 Site Investigation Report S140408 South Tyneside District Hospital

Solmek Ltd 12 Yarm Road Stockton-on-Tees TS18 3NA Tel: 01642 607083 Fax: 01642 612355 http://www.solmek.com

PHASE 2 SITE INVESTIGATION REPORT

SOUTH TYNESIDE HOSPITAL, SOUTH SHIELDS

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	1
	INTRODUCTION	
	SITE DESCRIPTION AND FIELDWORK	
4	GROUND CONDITIONS	3
5	CONTAMINATION TESTING RESULTS	3
6	CONTAMINATION ANALYSIS	5
7	GEOTECHNICAL TESTING AND ANALYSIS	6
ТАВ	LE 1: SUMMARY OF INORGANIC CONTAMINATION TESTING RESULTS	4

APPENDICES

Appendix A:	Drawings
Appendix B:	Borehole Logs and Trial Pit Logs
Appendix C:	Contamination Laboratory Results & CLEA Model Output Reports
Appendix D:	Geotechnical Laboratory Results and Soakaway Results
Appendix E:	Notes on Limitations, Contamination Guidelines

Revision	Date	Prepared By	Checked By
Final	May 2014	A. Cutts Engineering Geologist	S. Fisk Geotechnical Engineer

1 EXECUTIVE SUMMARY

Site Address	South Tyneside District Hospital, Harton Lane, South Shields, NE34 0PL
Site Description	The site lies at the north eastern corner of the hospital grounds and currently comprises an undeveloped grassed plot of land. A single storey brick building lies in the south eastern corner of the site which is currently occupied by the Estates and Works Department.
	Residential properties lie to the north and east. Hospital access roads form the southern and western boundaries with hospital buildings and parking areas beyond. A brick wall was present along the northern boundary along with a number of semi mature to mature deciduous trees.
Proposed Development	The site is outlined for the development of a new Care Hub for the elderly. This will also include parking areas and soft landscaping.
Fieldwork	 4no Cable percussive boreholes to depths of 10.0mbgl. 5no machine excavated trial pits to depths of between 0.80mbgl and 1.80mbgl. 3no soakaway tests.
Ground Conditions	 Made ground to a maximum depth of 0.80mbgl, comprising topsoil over clay fill locally gravel fill. Fill materials comprised brick rubble, concrete, ceramics, ash pockets and coal. Land drains encountered at 0.80mbgl in north west of site. Natural firm becoming stiff slightly sandy locally indistinctly thinly laminated clay was encountered directly below the made ground to depths of between 6.8 and 7.3mbgl. This overlies stiff locally very stiff sandy slightly gravelly clay to 10.0mbgl. Groundwater not encountered during fieldwork.
Contamination Testing Results	 2no samples (1 clay fill and 1 gravel fill) subject to testing; no raised contaminant levels. No asbestos fibres noted.
Contamination Analysis	 No remediation required beneath hard cover and building footprint. Made ground should generally be classed as slightly contaminated with respect to construction workers. PPE required for workers. Damping down of site during dry windy conditions. Clean cover of topsoil (300mm) for proposed soft landscaped areas subject to compliance testing. Ground and surface water are not considered to be at risk. With respect to utility suppliers, raised arsenic and mercury recorded, as a minimum all services should be laid in clean trenches. Sub surface concrete should be designed to DS-1 ACEC (Class AC-1s). Static water conditions.
Geotechnical Testing Results	 Moisture contents between 31% and 53%. Clay one result soft and remaining results firm (36-58kPa) from triaxial results. Clay one result soft with remaining results firm to very stiff from SPT N values. pH slightly alkaline. High shrinkage clay.
Mining Assessment	Not undertaken.
Geotechnical Analysis & Foundation Recommendations	 Bearing capacity of 161kN/m² at minimum depth of 1.0mbgl; 0.6m wide strips or 1m² pads. Settlements within 25mm. High shrinkage potential in relation to NHBC guidance, Chapter 4.2. Normal earthworks plant for excavations. No significant volume of groundwater expected at shallow depth. Soakaways not effective.

2 INTRODUCTION

2.1 Authorisation

The site investigation described in this report was carried out by Solmek to the instructions of Billinghurst George and Partners on behalf of South Tyneside District Hospital within the grounds of South Tyneside Hospital, South Shields.

2.2 Scope of Works

The site is outlined for the development of a new Care Hub for the elderly. This will also include parking areas and soft landscaping. A drawing showing the position of the site is included in Appendix A (Figure 1).

A geotechnical and environmental investigation was requested. A ground gas assessment and desk study was beyond the scope of this investigation and as such no details of the site's history has been assessed.

The fieldwork and testing was generally carried out according to the recommendations of BS5930: 1999 "Code of Practice for Site Investigations" and all stratum descriptions are as recommended in that publication. The information provided in this report is based on the investigation fieldwork, and is subject to the comments and approval of the various regulatory authorities.

There may be other conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report. Solmek reserve the right to alter conclusions and recommendations should further information become available or be provided. Any schematic representation or opinion of the possible configuration of ground conditions between exploratory positions is conjectural and given for guidance only and confirmation of intermediate ground conditions should be considered if deemed necessary.

3 SITE DESCRIPTION AND FIELDWORK

This area of site lies at the north eastern corner of the hospital grounds and currently comprises an undeveloped grassed plot of land. A single storey brick building lies in the south eastern corner of the site which is currently occupied by the Estates and Works Department.

The site is bound to the north by Harton Lane and to the east by Macany Avenue. Residential properties lie beyond to the north and east. Hospital access roads form the southern and western boundaries with hospital buildings and parking areas beyond. A brick wall was present along the northern boundary along with a number of semi mature to mature deciduous trees.

The site is accessed from Harton Lane in the north of the site.

3.1 Fieldwork

The fieldwork was carried out between 6th and 7th May 2014 and comprised:

- Four cable percussive boreholes (BH1 to BH4) drilled to depths of 10.0m below ground level (bgl).
- Five machine excavated trial pits (TP1 to TP4, including TP3A) to depths of between 0.80mbgl and 1.80mbgl.
- Soakaway testing in TP1, TP2 and TP4.

Standard penetration tests (SPT) and undisturbed (U100) samples were undertaken at various depths within the boreholes along with disturbed samples. Insitu hand vane readings and disturb sampling was undertaken within the trial pits by a Solmek engineer.

The samples were retrieved for chemical and geotechnical laboratory testing.

Descriptions of the strata encountered in the boreholes and trial pits together with details of testing, sampling and groundwater are presented in Appendix B of this report. A plan showing the location of the boreholes and trial pits can be found in Appendix A, (Figure 2).

4 GROUND CONDITIONS

A summary of the ground conditions encountered is given below.

4.1 Made Ground

Made ground was encountered within the trial pits and the boreholes at depths of between 0.4mbgl and 0.8mbgl. Grass over clayey and sandy locally gravelly topsoil was encountered from ground level to depths of between 0.1mbgl (TP3) and 0.45mbgl (BH1). The underlying deposits comprised slightly sandy clay fill and slightly sandy slightly gravelly clay fill with brick rubble, concrete, ceramics and coal fragments. Localised ash pockets were also encountered. Clay fill was proven from ground level in TP4. A thin layer of sandy gravel fill was encountered in TP1 between 0.25mbgl and 0.30mbgl.

Land drains were encountered in TP3 and TP3A at a depth of 0.80mbgl and the trial pits were terminated at this depth.

4.2 Natural Deposits

The natural deposits comprised firm becoming stiff slightly sandy locally indistinctly thinly laminated clay with sandstone fragments. This was encountered directly below the made ground to depths of between 6.8 and 7.3mbgl. This overlies stiff locally very stiff sandy slightly gravelly clay with sandstone, limestone and mudstone fragments to the termination depth of the boreholes at 10.0mbgl.

4.3 Groundwater

No groundwater was recorded by the driller within the boreholes or the engineer undertaking the trial pits during the investigation.

It should be noted the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities.

5 CONTAMINATION TESTING RESULTS

The site is outlined for the development of a new Care Hub for the elderly. This will also include parking areas and soft landscaping.

5.1 Contamination Testing

To provide information upon the possibility of ground contamination one sandy gravel fill sample from TP1 at 0.25mbgl and one clay fill sample from TP3 at 0.30mbgl were subject to chemical contamination analysis.

A suite of metals, semi-metals, non-metals, inorganics and asbestos soil screening were carried out on all the samples.

5.2 Test Results

 \triangleright

Given the sites end use, the test results have been compared to a series of Solmek Generic Assessment Criteria (GAC) thresholds based on a commercial land use. Solmek GAC were derived using the EA CLEA Software Version 1.06 (May 2011) which produce Model Output Reports to compare the contamination concentrations against. In the absence of Solmek GAC values, WS Atkins Soil Screening Values (SSV) for commercial land use have been used (which have been derived using EA CLEA Version 1.06, May 2011).

Solmek used the following input parameters within the CLEA Model to generate the GAC values:

- Land use: Commercial
 - Receptor: Female (Com)
- Building Type: Office (Post 1970)

- Soil Type: Sandy Clay Loam
- > **Soil pH:** 7.5 (lowest recorded value)
- > Soil Organic Matter: 13% (lowest recorded value)

The test results are presented in Appendix C, and a summary is provided below in Table 1.

The CLEA UK Model Output Reports have been included in Appendix C. The CLEA Model output reports show three assessment criteria (Oral, Inhalation and Combined). Where all three boxes are shaded red the threshold values have been assumed to be the soil saturation limit.

TABLE 1: SUMMARY OF INORGANIC CONTAMINATION TESTING RESULTS

Determinant	Units	Number of Samples above Level of Detection	Minimum Level	Maximum Level	Threshold Value	Number of Results Exceeding Threshold Value			
Metals									
Cadmium	mg/kg	2	0.6	1.0	230	0			
Chromium	mg/kg	2	31	39	30400	0			
Chromium (VI)	mg/kg	0	<1	-	34.8	0			
Copper	mg/kg	2	84	240	71700	0			
Lead	mg/kg	2	59	290	5370*	0			
Mercury	mg/kg	2	0.10	1.5	3640	0			
Nickel	mg/kg	2	50	61	1790	0			
Zinc	mg/kg	2	77	260	506000	0			
Semi metals and no	on metals								
Semi metals and non metals Arsenic mg/kg 2 14 30 635 0									
Boron	mg/kg	2	1.3	1.4	6270	0			
Selenium	mg/kg	1	<0.5	0.5	13000	0			
Inorganic chemical	s								
Cyanide (total)	mg/kg	1	<0.1	0.3	1580	0			
W.S. Sulphate	mg/l	2	27	57	500***	0			
Other									
pН	pН	2	7.5	7.6	<5.5**	0			
Phenols	mg/kg	0	<0.3	-	39500	0			
* Atkins SSV (GAC) ** EA Upper Tier Thi *** BRE Special Diges	reshold Value								

5.3 Metals, Semi Metals and Non Metals

From the samples tested no raised levels of metals or metalloids exceeded the threshold values for long term risk to human health.

5.4 Inorganic Chemicals

Soluble sulphates (potentially aggressive to foundation concrete) were recorded at 27 and 57mg/l. This lies below the 500mg/l threshold limit which would affect the mix of concrete required in contact with the fill.

The result of the pH testing was 7.5 and 7.6 which is consistent with slightly alkaline conditions.

5.5 Asbestos

No asbestos fibres were detected in the two tested samples.

5.6 Environmental Protection Act 1990: Part 2A Revised Statutory Guidance (April 2012)

This revised document explains how the Local Authority should decide if land, based on a legal interpretation, is contaminated. The document replaces the previous guidance given in Annex 3 of DEFRA Circular 01/2006, issued in accordance with section 78YA of the 1990 Environmental Protection Act.

The main objectives of the Part 2A regime are to *"identify and remove unacceptable risks to human health and the environment" and* to *"seek to ensure that contaminated land is made suitable for its current use".* Part 2A

uses a risk based approach to defining contaminated land whereby the "risk" is interpreted as "the likelihood that harm, or pollution of water, will occur as a result of contaminants in, on or under the land" and by "the scale and seriousness of such harm or pollution if it did occur".

For a relevant risk to exist a contaminant, pathway and receptor linkage must be present before the land can be considered to be contaminated. The document explains that "for a risk to exist there must be contaminants present in, on or under the land in a form and quantity that poses a hazard, and one or more pathways by which they might significantly harm people, the environment, or property; or significantly pollute controlled waters."

A conceptual model is used to develop and communicate the risks associated with a particular site.

To determine if land is contaminated the local authority use various categories from 1 to 4. Categories 1 and 2 include *"land which is capable of being determined as contaminated land on grounds of significant possibility of significant harm to human health."* Categories 3 and 4 *"encompass land which is not capable of being determined on such grounds"*.

See Appendix E for additional notes on contamination guidelines.

6 CONTAMINATION ANALYSIS

6.1 Users of the Site Once Development is Complete

To establish if the levels of contaminants present on site may pose a risk to the health of the future users of the site the results of the contamination testing have been compared to a series of Solmek GAC thresholds based on commercial land use.

The results indicate that the concentrations of contamination within the samples were below the threshold values for long term risk to human health and are unlikely to pose a risk to the current and future users of the site. Remediation is therefore not required for areas beneath proposed building footprints and other areas of hardstanding.

If any zones of odorous, brightly coloured or suspected contaminated ground are encountered then work should cease in that area until the material has been tested. The results of the tests will determine whether or not remediation will be required.

The current legislation on waste involves the categorization of materials into inert waste, non reactive hazardous wastes and hazardous wastes. The determination of the category depends on DEFRA landfill directive waste acceptance criteria (WAC) testing. Material taken off site may be subject to WAC by the appropriate waste disposal company.

6.2 Construction Workers and Users of Surrounding Sites

Short term human exposure to contaminants present in soils can occur via several pathways during the construction and ground works phase of the development. These include dermal absorption after contact with contaminated ground, inhalation of soil or dust (including windblown dust), inhalation of volatised compounds, inadvertent soil ingestion and contact with contaminated groundwater.

Using guidance in the HSE publication *"Protection of Workers and the General Public during the Development of Contaminated Land"*, the made ground can generally be classed as slightly contaminated with mercury, nickel and zinc raised. Copper and nickel were slightly elevated and fall into the contaminated category.

It is considered that levels of contamination are unlikely to pose a significant risk to construction workers and users of surrounding sites providing that correct PPE is employed. It is recommended that appropriate PPE in accordance with HSE and Environment Agency guidance is adopted for the duration of the contractor works and good practice is adopted to minimise the release of potential contaminants during ground works.

During dry weather, excavations may require clean water to be sprinkled at shallow depth to prevent excess dust escaping to off-site receptors.

6.3 Vegetation

Plants can be affected by soil contamination in a number of ways resulting in growth inhibition, nutrient deficiencies and yellowing of leaves. Contaminants are taken up by plants through the roots and through foliage. Contaminants identified as being highly phytotoxic include boron, cadmium, copper, nickel, and zinc.

To establish if the levels of contaminants present on site may pose a risk to vegetation the results of the contamination testing have been compared to a series of threshold values published in "*Code of Good Agricultural Practice for the Protection of Soil*". Following elevated mercury and copper was recorded within the clay fill sample from TP3 at 0.3mbgl. None of the remaining phytotoxic determinands were above the corresponding thresholds.

Should soft landscaped areas be proposed the existing topsoil onsite should be suitable for re-use provided it is first screened to remove any deleterious material. The deleterious materials encountered can be placed beneath areas of permanent hardcover. The remaining topsoil will require compliance testing in order to assess it suitability within a clean capping layer. A clean cover system comprising at least 300mm of screened, clean topsoil should be placed in all proposed soft landscaped areas.

6.4 Ground and Surface Water

The principal pathway by which soil contamination may reach the water environment is through a slow seepage or leaching to groundwater or surface water. The potential for contaminants to migrate along such pathways is dependent on the chemical and physical characteristics of the contaminants and the local hydrogeology.

There are no surface water features in close vicinity of the site. Groundwater was not encountered in the boreholes or trial pits during the investigation. Therefore given the low contamination profile of the made ground, lack of groundwater and presence of extensive continuous natural clay layers and the fact that the development will cover the site reducing infiltration, the risk to controlled waters is considered low.

6.5 Construction Materials

Materials at risk from potential soil contamination include inorganic matrices such as cement and concrete and also organic material; e.g. plastics and rubbers. Acid ground conditions and elevated levels of sulphates can accelerate the corrosion of building materials. Plastics and rubbers are generally used for piping and service ducts and are potentially attacked by a range of chemicals, most of which are organic, particularly petroleum based substances. Drinking water supplies can be tainted by substances that can penetrate piping and water companies enforce stringent threshold values.

BRE Special Digest One: *"Concrete in Aggressive Ground"*: 2005 3rd Edition has been used to assess the risks posed to underground concrete and to establish the design measures required to mitigate the risks. The results of the pH and sulphate tests fall into Class DS-1, ACEC (Class AC-1s) requirements for concrete protection assuming static groundwater conditions.

The levels of potential contaminants detected have been compared to thresholds supplied in the Water Regulations Advisory Scheme Guidance Note 9-04-03 *"The Selection of materials for Water Supply Pipes to be laid in Contaminated Land"*. Based on the contamination test results concentrations of arsenic and mercury were present in levels exceeding the threshold values. Consultation with the utility providers is recommended should this be a requirement for a water pipe supply to the development. As a minimum services should be placed within clean service trenches.

7 GEOTECHNICAL TESTING AND ANALYSIS

Samples taken from the boreholes underwent a series of geotechnical tests (BS 1377:1990) to aid foundation design and soil description. In addition, insitu Standard Penetration Tests (SPTs) were undertaken at regular intervals during drilling. The geotechnical results are presented in Appendix D.

7.1 Strength and Density

Five undisturbed U100 samples were subjected to quick, undrained triaxial testing. The samples tested were from BH1 (2.0-2.45mbgl), BH2 (1.2-1.65mbgl), BH3 (1.2-1.65mbgl) and BH4 (1.2-1.65mbgl and 3.0-3.45mbgl). The results indicated one strength of 36kPa (soft) with the reminder in the range 50 to 58kPa indicating firm conditions.

SPT N values within the natural clay ranged from 6 to 32, when multiplied by five the SPT N values roughly equate to shear strength in cohesive deposits. Therefore, shear strengths ranging from 30kPa (soft) to 160kPa (very stiff) can be assumed. The average N value was 16 (80kPa) indicating a stiff range.

7.2 Moisture Contents

Seven samples were recovered from the boreholes and subject to moisture content testing at depths of between 0.70 and 3.00mbgl. The moisture levels were between 31 and 53%.

7.3 Atterberg Limit Determinations

Three Atterberg Limit Determination tests were carried out on samples of natural cohesive material to classify the fine grained soil. The results were compared to the Casagrande Chart published in BS 5930 and showed the samples to be clay of high to very high plasticity.

The Plasticity Indices were between 36 and 47 with the moisture contents recorded above the corresponding plastic limit. The cohesive material can be assessed as having a **high** shrinkage potential in relation to NHBC Guidance Chapter 4.2.

BS EN ISO 14688-2, Geotechnical Investigation and Testing - Identification and Classification of Soil, Part 2, Section 5.4, Table 6 outlines the strength of cohesive soils based on the Consistency Index. This is given by the numerical difference between the liquid limit and the water content expressed as a percentage ratio of the plasticity index. The Consistency Index of the samples range from 0.7 to 0.9 indicating a firm to stiff (75kN/m² plus) range.

7.4 pH and Sulphate Results

Two samples of natural ground from depths of between 1.20 and 2.00mbgl were tested for acidity and soluble sulphate content to assess whether the material may be potentially aggressive to building fabric. The results of the pH testing was 7.6 and 8.0 indicating slightly alkaline conditions. The soluble sulphates were recorded at 74 and 95mg/l.

7.5 Foundations

Foundations for the proposed new development are likely to be traditional strip or pad footings on the natural clay.

Based on plasticity index results, all cohesive soils at the site should be regarded as being of **high** volume change potential. Foundations should therefore be placed at a minimum depth of 1.0m below original or finished ground level, whichever is the lower. Based on the average shear strength around 1.0mbgl $(69kN/m^2)$ a safe bearing capacity of $161kN/m^2$ has been calculated for a 0.6m wide strip footing or $1m^2$ pad. Providing the imposed load of the structures do not exceed the bearing capacity then settlement should be within normal tolerances.

The plasticity index value indicated that the clay tested and located at foundation depth has a **high** shrinkage potential. Reference should be made to NHBC Standards, Chapter 4.2 to determine the depth of foundations in the vicinity of existing trees and proposed trees. Foundations may require deepening and be provided with appropriate heave precautions.

Prior to placing foundation concrete, obvious soft or loose spots should be removed and replaced with suitably recompacted hardcore or lean mix concrete. In addition, all excavations should be inspected to ensure that they fully penetrate areas of disturbed ground.

Further advice should be sought from Solmek if unexpected ground conditions are encountered during

redevelopment.

It should be recognised that clay rich soils can deteriorate fairly rapidly on exposure, particularly in periods of wet weather and frost. It would be prudent to protect all exposed soils in foundation excavations with a concrete blinding layer, particularly if they are likely to remain open for extended period of time.

Sub-surface concrete should be Design Sulphate Class DS-1, with the site allocated an ACEC Classification of AC-1s, assuming static groundwater conditions.

7.6 Floor Slabs

In accordance with NHBC guidelines, a ground slab can be adopted where made ground is less than 0.6m in thickness. Where made ground exceeds 0.6m in thickness to utilise ground bearing slabs, made ground could be removed from beneath the footprint of the buildings and a blanket of compacted granular fill placed in accordance with an engineering specification; alternatively a suspended floor slab will be required.

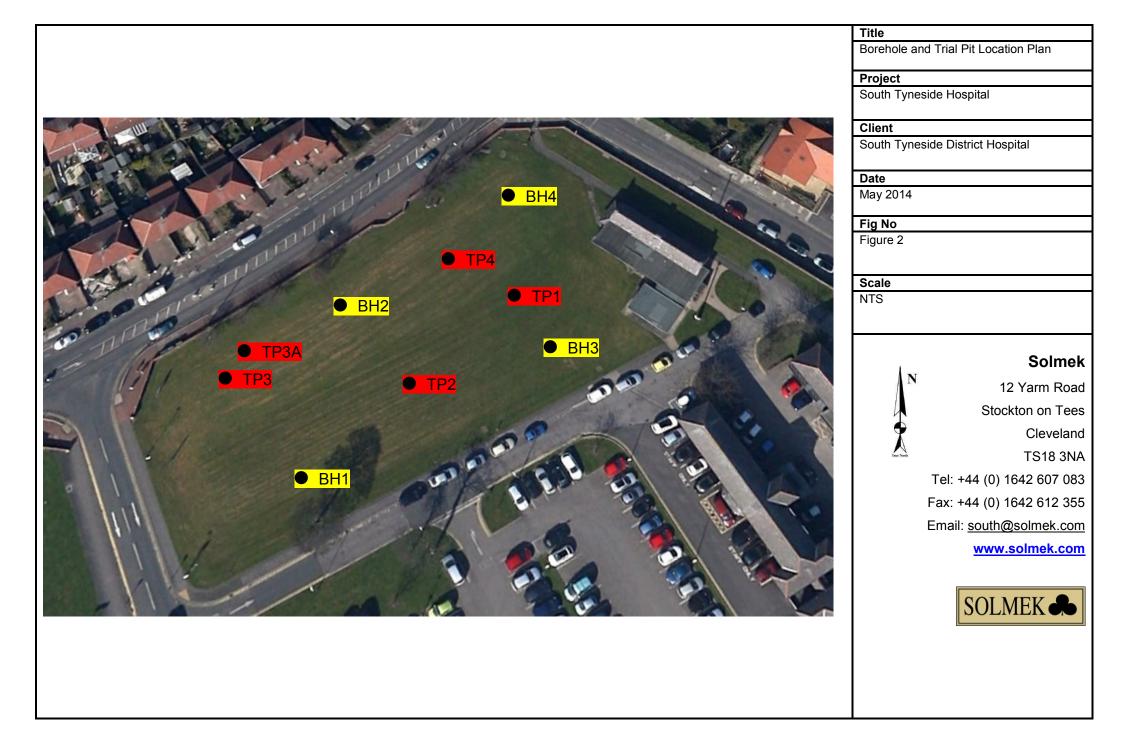
7.7 Excavation

Based on the nature of the ground conditions encountered, excavations should be within the capacity of normal earthworks plant. Land drains are likely to be encountered locally across the western parts of the site. Stability of excavations will be poor to moderate in the made ground but should improve within the natural clay. Sides should be designed, constructed and supported in accordance with the recommendations given in CIRIA Report No. 97: "Trenching Practice".

7.8 Groundwater

No groundwater was recorded by the driller during the fieldwork or the engineer during the trial pitting. Therefore, no significant volume of groundwater is expected at shallow depth.

It should be noted the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Due to the cohesive strata encountered dewatering may be necessary if excavations are left open for prolonged periods during inclement weather conditions.


7.9 Soakaway Testing

Three soakaway tests were undertaken within the clay at depths of 1.5 and 1.8mbgl. The water level was monitored for a period of three hours however no fall in water level was recorded. Results of $0.0m/s^{10-6}$ were therefore obtained which is unsuitable for soakaway design.

SOLMEK

APPENDIX A

Crown copyright; Ordnance Survey
Client: South Tyneside District Hospital
Project: South Tyneside Hospital
Title: Site Location Map
Date May 2014
SOLMEK 🖡

APPENDIX B

BOREHOLE LOG

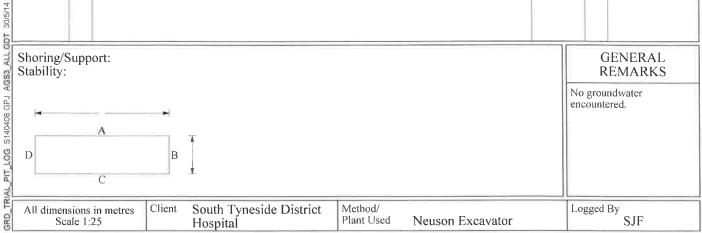
Project							_					BOREH	$\frac{1642}{01}$	
-	ith Tyne	side Hos	pita]										INU
Job No	ant ryne	Date	-		Ground Lo	evel (m)	Co-Ord	linates ()			BH	01	
S14	0408		00	5-05-14										
Contractor												Sheet		
												1 0	f 1	-
SAMPL	LES & T	ESTS	er					STRAT	ΓA				S.	nent/
Depth	Type No	Test Result	Water	Reduced Level Legen	d (Thick- ness)				DESCR				Geology	Instrument/
0.30-0.40	в				0.45			OUND: Gra						
0 70-0 80	В		ň	1 🗰	0.80			OUND: Lig			¥			
	U		7	/*	- 1.10			i slightly sa			l sandstone	fragmente		
1.20-1.65 1.20-1.65	B D	N=9				noted		siigiitty sai	iuy CLA I	Occasiona	t sandstone	iraginents		
2.00-2.45	U100	34 Blows												
2.45-2.55	В													
3.00-3.45 3.00-3.45	B D	N=6												
4 00-4 45	U100	37			(6.00)									
4.45-4.55	В	Blows												
5.00-5.45	л			82										
5.00-5.45	B D	N=13												
6.00-6.45	U100	54												
6.45-6.55	В	Blows												
0,45-0.55	Ы													
7.50-7.95 7.50-7.95	B D	N=23			7.10	Stiff	to very lar to s	y stiff grey ub-angular	brown sand , fine to coa	ly slightly g arse of sand	ravelly CLA Istone and li	AY. Gravel is imestone.		
9.00-9.45 9.00-9.45	B D	N=32			10.00									
10.00	В				- 10.00									
Bor	ing Prog	gress and		ater Observa		Π	(Chisellin	g	Water	Added	GENE	RAL	,
Date	Time	Depth	E	Casing Depth Dia. mr	n Water	F	rom	То	Hours	From	То	REMA		
10.00 Bor Date All dimer Scale												No groundwate encountered.	er	
All dimer Scale	sions in n e 1:65.625		lient	South Tyn Hospital	eside Dist	rict	Meth	nod/ t Used	I	I		Logged By	C	

BOREHOLE LOG

Project													BOREH	OLE	No
	uth Tyne	eside Ho	-	.1									ВН	102	
Job No		Dat				Ground Le	evel (m)	Co-Ord	linates ()			БП	UZ	
	40408		0	6-05-14											
Contractor													Sheet		
													1 0	f 1	
SAMPL	LES & T	ESTS	er		r				STRAT	Γ Α				b.	lent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				DESCR				Geology	Instrument/ Backfill
0.20						0.40						sandy topso	il.		
0.30	В					0.70			OUND: Bro			y fill,			
0.70	В					L(0.50)	Firm	light b	rown slight	ly sandy Cl	LAY.				
1.20-1.65	U100	14			清清.	- 1.20	Firm	becom	ing stiff gro	ey brown sl	ightly sand	y CLAY,			
1.65-1.75	В	Blows													
2.00-2.45	B					E									
2 00-2.45	D	N=12				•									
3.00-3.45	U100	52				-									
		Blows				i.									
3,45-3,55	В														
4.00-4.50	В					-(5,60)									
4.00-4.45	D	N=12				-									
					1	l.									
5.00-5.45	U100	52			2-3	F									1
5.45-5.55	В	Blows				ł									
5.15 5.55	D														1
6 00-6 45 6 00-6 45	В	N=16				Ē									
0.00-0.43	D	IN-10			2-2	-									
					0	6.80	Stiff	grey b	rown sandy	slightly gr	avelly CLA	Y. Gravel is	angular to		
						E	sub-r	ounde	d, fine to co	parse of san	idstone and	limestone.	e		
7.50-7.95	U100	93			0	-									
7.05.9.05	D	Blows				Ē.									
7.95-8.05	В					(2.20)									
						(3.20)									
	D					È.									
9.00-9.45 9.00-9.45	B D	N=29			0	Ē									
						1									
10.00	В				0	10.00		_							
10.00	D					-									
Bor	ing Pro	gress an	d W	ater Ob	servati	ons		(Chiselling	3	Water	Added	GENE	RAL	
Date	Time	Depth		Casir Depth I			Fr	om	То	Hours	From	То	REMA		
						os pa							No groundwate	er	
													encountered,		
<u> </u>															
10.00 Bor Date	nsions in n e 1:65.625		lient	Sout Hosp	h Tyne vital	side Dist	rict	Meth Plant	nod/ t Used				Logged By	С	

BOREHOLE LOG

Project													BOREH		No
	uth Tyne	side Hos	-	1		0.11	1.4		0.01				вн	03	
Job No	10.100	Date		T 0 C 1 4		Ground Le	vel (m)	Co-Ord	linates ()				••	
Contractor	40408		0	7-05-14	·								Sheet		_
Contractor													1 0	f 1	
SAMPL	LES & T	ESTS	1						STRAT	ΓA				ý	ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)					IPTION			Geology	Instrument/ Backfill
0.20-0.30	В					0.40	topso	ila				ightly sandy	clayey		
0.40-0.50	В					E0.50	MAE Firm	DE GRO	OUND: Bro slightly sar	own clay fil idy CLAY.	1.	_			
1.20-1.65	U100	30													
1.65-1.70		Blows													
2.00-2.45	D D	N=9													
2.00-2.15	Ų														
3.00-3.45	U100	48 Blows			문민										
3.45-3.50	D	Diotio													
4.00-4.45	В					(6.70)									
4.00-4.45	D	N=11													
5.00-5.45	U100	39 Blows													
5.45-5.50	Ð														
6.00-6.45	В														
6.00-6.45	D	N=13													
					0	7.20	Stiff	grey b	rown sandy	slightly gr	avelly CLA	Y. Gravel is	angular to		
7,50-7,95	U100	118 Blows			- 0		sub-1	ounde	d, tine to co	barse of san	idstone and	limestone.			
7 95-8.00	D				0	4 4									
						(2.80)									
9.00-9.45	D				0										
9 00-9 45	B D	N=31													
					0	10.00									
					-										
Bor Date All dimen Scale	ing Pro	gress and	1 W	ater OF] servati	r ons		(Chiselling	g	Water	Added	GENE	RAI	1
Date	Time	Depth		Casii Depth			Fi	rom	То	Hours	From	To	REMA		
													No groundwate encountered.	er	
													and a second second		
								r'							
All dimen Scale	sions in n e 1:65,625		lient	Sout Hos	h Tyne oital	side Dist	rict	Meth Plant	iod/ Used				Logged By	2	


BOREHOLE LOG	BOR	EHOI	LE LC) G
---------------------	-----	------	-------	------------

Project													BOREH		No
So	uth Tyne	eside Hos	^	ıl									BH	04	
Job No		Date				Ground Le	vel (m)	Co-Ord	linates ()			DU	04	
	40408		0	7-05-14											
Contractor	-												Sheet		
													1 0	f I	15
SAMPI	LES & T	ESTS	er		r				STRAT	ГА				Ś	nent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				DESCR				Geology	Instrument/ Backfill
0.20-0.30	В					0.30				ass over san					
0.30-0.50	В					0.50				own slightly ly sandy CI		/ fill.			
·					1	È I		U	0	5					
1.20-1.65	U100				금급	2									
1.65-1.70	D	Blows													
2.00-2.45	D	N=9													
2.00 2.45	Ŭ														
2011/2															
3.00-3.45	U100	47													
						Ē									
3.45-3.50	D														
4 00-4 45	В					(6.80)									
4.00-4.45	D	N=11													
5.00-5.45	U100	NR													
6.00-6.45	B D	N=12													
0.00-0.45	D	IN-12													
					2-2	7.30	G 100						0		
7.50-7.95	U100	123					angu	lar to s	to grey bro ub-rounded	own sandy s d, fine to co	arse of san	velly CLAY dstone, mud	stone and		
7.95-8.00	D	Blows			0		limes	tone,							
7.95-0.00	D														
					0	(2.70)									
9.00-9.45	В														
9.00-9.45	D	N=29				-									
					-										
						- 10,00					_				
Bor	ing Prop	gress and						C	Chiselling	g	Water	Added	GENE		
Date	Time	Depth	Ē	Casin Depth I	g Dia, mm	Water Dpt	Fi	om	То	Hours	From	То	REMA		
													No groundwate encountered	er	
													succumered.		
										l i					
Bor Date All dimer Scal															
All dimer	nsions in n	netres C	lient	Sout	1 Type	side Distr	ict	Meth	od/				Logged By		
Scal	e 1:65.625			Hosp	ital				Used				A	С	

			TRIA	L PIT LO	G				Tel 0164260708 Fax 0164261235
Project								TF	RIAL PIT No
South Job No S1404		lospital Date 06-05-14	Ground Level (m) Co-0	Ordinates ()				TP1
Contractor	00	00-05-14						Sheet	
									1 of 1
0	А	1	В	С		D	0	15	Legend
2							2		
Depth No			STRATA DESCRI				Dept	1	S & TESTS Remarks/Tests
0.00-0.25		ROUND: Grass ov	er grey slightly sandy sli		lay topsoil.		Dept	птурс	Kelliarks/Tests
0.25-0.30 0.30-0.40 0.40-0.90	Sand is fin Gravel is to MADE G Firm to sti	ROUND: Firm gre ff light brown mot	lar of ash, clinker and s	CLAY.	LAY.]	0.25 0.50 0.60 0.90	B HV B	=82kPa
							0.90	HV B	=96kPa
l.50	End of tri	al pit.					1.50	В	
Shoring/Sup Stability:	port:								GENERAL REMARKS
D	- 1,9 A C	B 0.45						encount	tion test undertaker
All dimension Scale	ns in metres 1:25	Client South Hospit	Tyneside District	Method/ Plant Used	Neuson Exc	avator]	Logged	By SJF

			TRIAL	PIT LOG				Tel 016426070 Fax 016426123
Project	Towney internet	-1					TR	IAL PIT No
Job No	Tyneside Hospit	al	Ground Level (m)	Co-Ordinate			-	TP2
S1404		06-05-14	Ground Lever (m)	co-ordinate				
Contractor							Sheet	
								1 of 1
0	А	В		С	D	0	107	Legend
1								
2						2		
Dent			STRATA				N 1	S & TESTS
Depth N 0.00-0.30	MADE GROUN	D: Grass over g	DESCRIPT rev clav topsoil.	ION		Dept	h Type	Remarks/Tests
0.30-0.60	MADE GROUN	D: Firm arey els	av fill			0,20	В	
0.50-0.00	MADE GROOP	D. Phili grey ch	iy mi.			0,40	В	
	Plan Pater				T A X/	_		
0.60-1.10	Firm light brown	n mottled grey w	eakly indistictly lamina	ted slightly sandy C	LAY	0.65	HV	=70kPa
						1.00	в	
1.10-1.80	Stiff dark brown	n/grey weakly inc	listincly laminated slig	ntly sandy CLAY.		1.10	HV	=106kPa
1.80	End of trial pit.					1.70	В	
Shoring/Su	pport:						0	ENERAL
Stability:							R	EMARKS
D	A	B 0.45					No grou encounte Percolat in trial p	ered. ion test undertake
All dimensio		It South Tra	neside District	/ethod/			Logged	Bv
Scale		Hospital		lant Used Neu	son Excavator		Lopped	SJF

					TRIAL F	PIT LOG				Tel 0164260708 Fax 0164261235
t									TR	IAL PIT No
So	ith T	yneside Ho			1					TP3
) S14	0408	Da 3	te 06-05-	-14	Ground Level (m)	Co-Ordinates ()				110
ictor									Sheet	
										1 of 1
		А		В		С	D	0	6.2	Legend
				S	TRATA			SAN		S & TESTS
h	No			5	DESCRIPTIO	ON		Depth	Гуре	Remarks/Tests
.10 .50		MADE GR Sand is fine	OUND: Firm	m grey slig	y clay topsoil. htly sandy slightly grav f pottery, brick, glass, c			0.30	В	
.80		MADE GR	OUND: Fin	m light bro	wn slightly sandy clay t	fill,				
)		Land drain Trial pit rel	noted at 0.8 oacted appr	Ombgl. oximately 5	5m East.					

Project

Job No

0 -

1

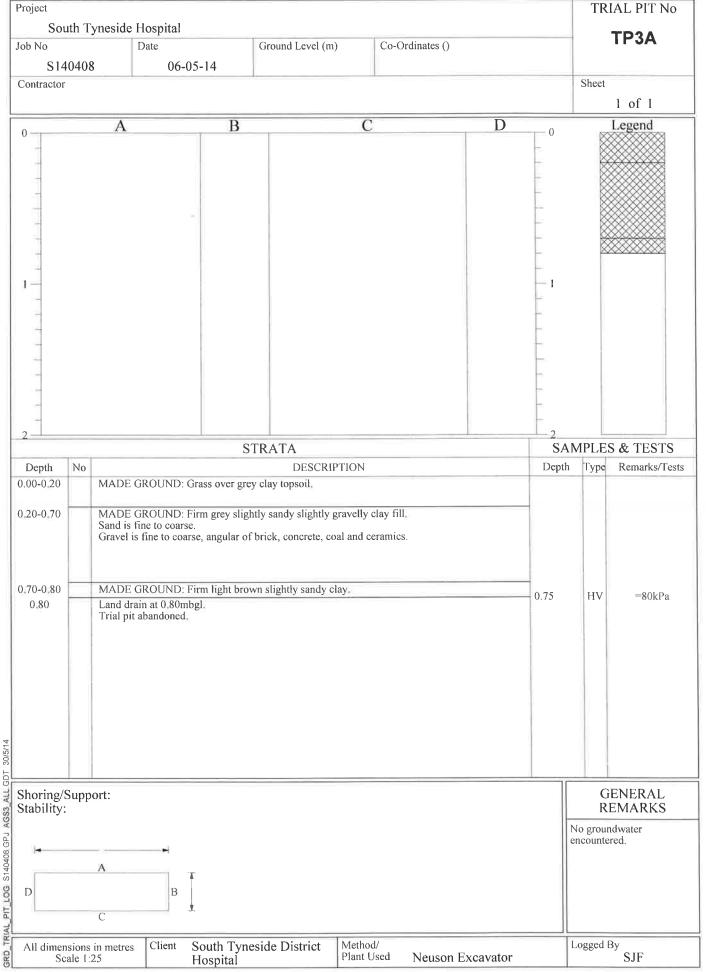
2

Depth

0.00-0.10

0.10-0.50

0.50-0.80


0.80

Contractor

Solmek

ТРЗА
TRIAL PIT No
Tel 01642607083 Fax 01642612355
12 Yarm Road TS18 3NA

INALI I LOO	TRI	AL	PIT	LC)G
-------------	-----	----	-----	----	----

Tel 01642607083

TRIAL PI7	r log
-----------	-------

Project	_										Fax 01642612355
-	+h T	yneside H	Iconital							IR	IAL PIT No
Job No	ui i		Date		Ground Level (m)	Co-	Ordinates ()			-	TP4
S14	0409		06-05	-14	Ground Lever (m)		Ordinatos ()				
Contractor	0100		00 05	11						Sheet	
											1 of 1
0		Α		В		С		D	0	-	Legend
		A				C			0	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	
2				0'	TRATA				2		C & TESTS
Depth	No			3	DESCRIF	TION			Dept	AMPLES & TESTS oth Type Remarks/Tests	
0.00-0.50		Sand is fi Gravel is MADE G Land drai Trial pit e	ROUND: Br n noted at 0, extended to th	e angular of own slightly 00mbgl e West	y slightly sandy slig brick, concrete and sandy clay fill.		clay fill.		0.40	В	
0.80-0.90	_		nd drain note		bl. ntly sandy CLAY.				-		
0,90-1,50					stinctly laminated s	lightly sandy	CLAY.		1.00 1.00	B HV	=80kPa
1.50		End of tri	al pit.						1.50	В	
Shoring/S Stability:	upp	ort:								RI	ENERAL EMARKS
D		1.4 A C	B 0.45	ŝ						No grount encounter Percolation in trial pi	red. on test undertaken
All dimens	sions ile 1:2	in metres	Client S H	outh Tyne Iospital	side District	Method/ Plant Used	Neuson Ex	kcavator]	Logged E	^{3y} SJF

GRD TRIAL PIT LOG S140408 GPJ AGS3 ALL GDT 30/5/14

APPENDIX C

Certificate of Analysis Certificate Number 14-05416

14-May-14

Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 14-05416
- *Client Reference* \$140408
 - Contract Title Tyneside Hospital
 - Description 2 Soil samples.
 - Date Received 08-May-14
 - Date Started 08-May-14
- Date Completed 14-May-14
- Test Procedures Identified by prefix DETSn (details on request), Asbestos Analysis DETSC 1101.

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

PLA.

Rob Brown Business Manager

Summary of Chemical Analysis Soil Samples

Our Ref 14-05416 *Client Ref* S140408 *Contract Title* Tyneside Hospital

	643261	643262				
		Sample ID				
			Depth	0.25	0.30	
		(Other ID	1	1	
		Sam	ple Type	В	В	
		Sampl	ing Date	06/05/14	06/05/14	
		Sampli	ing Time	n/s	n/s	
Test	Method	LOD	Units			
Metals						
Arsenic	DETSC 2301#	0.2	mg/kg	14	30	
Boron (water soluble)	DETSC 2123#	0.2	mg/kg	1.4	1.3	
Cadmium	DETSC 2301#	0.1	mg/kg	0.6	1.0	
Chromium	DETSC 2301#	0.15	mg/kg	31	39	
Hexavalent Chromium	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	
Copper	DETSC 2301#	0.2	mg/kg	84	240	
Lead	DETSC 2301#	0.3	mg/kg	59	290	
Mercury	DETSC 2325#	0.05	mg/kg	0.10	1.5	
Nickel	DETSC 2301#	1	mg/kg	61	50	
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	0.5	
Zinc	DETSC 2301#	1	mg/kg	77	260	
Inorganics						
рН	DETSC 2008#			7.5	7.6	
Cyanide total	DETSC 2130#	0.1	mg/kg	< 0.1	0.3	
Organic matter	DETSC 2002#	0.1	%	21	13	
Carbonate (as CaCO3)	DETSC 2005*	1	%	1.0	5.0	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	57	27	
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	

Key: * -not accredited. # -MCERTS (accreditation only implied if report carries the MCERTS logo). n/s -not supplied.

Summary of Asbestos Analysis Soil Samples

Our Ref 14-05416 *Client Ref* S140408 *Contract Title* Tyneside Hospital

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
643261	TP1 1 0.25	SOIL	NAD	none	Jeff Cruddas
643262	TP3 1 0.30	SOIL	NAD	none	Jeff Cruddas

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 14-05416 Client Ref S140408 Contract Tyneside Hospital

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
643261	TP1 0.25 SOIL	06/05/14	PG		
643262	TP3 0.30 SOIL	06/05/14	PG		
Key: P-Plast	0				
DETS canno	t be held responsible for	r the integrity of san	ples received whereby the laboratory did not undertake the san	pling. In this instance sa	mples received may
be deviating	g. Deviating Sample crite	ria are based on Bri	tish and International standards and laboratory trials in conjunct	on with the UKAS note 'O	Guidance on
Deviating Sa	amples'. All samples rece	eived are listed abov	e. However, those samples that have additional comments in rel	ation to hold time and/or	r inappropriate
containers a	are deviating due to the	reasons stated. This	means that the analysis is accredited where applicable, but resu	Its may be compromised	due to sample
deviations.	If no sampled date (soils) or date+time (wat	ers) has been supplied then samples are deviating. However, if yo	ou are able to supply a sa	mpled date (and
time for wa	ters) this will prevent sar	mples being reporte	d as deviating where specific hold times are not exceeded and w	here the container suppli	ied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

CLEA Softwa	re Version 1.06	Page 1 of 11
Report generated	29-May-14	
Report title	South Tyneside Hospital	Environment
Created by	A Cutts at Solmek	Tigency
RESULTS		

CLEA Software Version 1.06

Report generated 29-May-14

Page 2 of 11

		Assessm	ent Criterion	(mg kg ¹)	Rati	o of ADE to	нсv		50%	rule?
		oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal
1	Cadmium	3.99E+02	3.87E+02	2.30E+02	0.41	0.59	1.00	NR	Yes	No
2	Chromium III	3.31E+05	3.34E+04	3.04E+04	0.09	0.91	1.00	NR	No	No
3	Chromium VI	NR	3.48E+01	NR	0.00	1.00	NR	NR	No	No
4	Copper	1.78E+05	9.60E+04	7.17E+04	0.25	0.75	1.00	NR	Yes	No
5	Mercury, inorganic	4.41E+03	2.09E+04	3.64E+03	0.83	0.17	1.00	NR	No	No
6	Nickel	2.22E+04	1.79E+03	NR	0.07	1.00	NR	NR	No	No
7	Zinc	6.62E+05	1.32E+06	5.06E+05	0.62	0.38	1.00	NR	Yes	No
8	Arsenic	6.35E+02	6.95E+02	NR	1.00	0.91	NR	NR	No	No
9	Boron	2.37E+05	6.39E+03	6.27E+03	0.02	0.98	1.00	NR	No	No
10	Selenium	1.30E+04	NR	NR	1.00	NR	NR	NR	No	No
11	Cyanide	1.46E+04	1.71E+03	1.58E+03	0.07	0.93	1.00	NR	No	No
12	Phenol	1.54E+06	4.05E+04	3.95E+04	0.03	0.97	1.00	3.62E+05 (vap)	No	No
13										
14		ļ								
15										
16								<u> </u>		
17										
18										
19										
20								ii		l İ

Report generated 29-May-14

Page 3 of 11

	Assessr	nent Criterion	(mg kg ⁻¹)	Ratio	o of ADE to	HCV		50%	rule?
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									

Network Sul Distribution Sea Distrinteradiation Sea Distribution <th>Page 4 of 11</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ļ</th> <th>29-May-14</th> <th></th> <th></th> <th>ort generated</th> <th>Repo</th> <th></th> <th colspan="10">CLEA Software Version 1.06</th>	Page 4 of 11						ļ	29-May-14			ort generated	Repo		CLEA Software Version 1.06														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Media Concentrations													Soil Distribution												
1 1	Shrub fruit Tree fruit	Herbaceous fruit	Tuber vegetables	Root vegetables	Green vegetables	Outdoor vapour at 1.6m	Outdoor vapour at 0.8m	Indoor Vapour	Outdoor dust at 1.6m		Indoor Dust	Soil gas	Soil	Total	Vapour	Dissolved	Sorbed											
2 Chromium III 100.0 0.0 100.0 3.04E+04 NR 1.52E+04 3.65E-04 2.07E-04 0.00E+00 0.00E+00 0.00E+00 NA	mg kg ⁻¹ FW mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	1		mg m⁻³		mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg⁻¹	mg m ⁻³	mg kg ⁻¹	%	%	%	%											
3 Chromium VI 98.3 1.7 0.0 100.0 3.48±01 NR 1.74±01 4.18±07 2.37±07 0.00±00 0.00±00 0.00±00 NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	1.57E-06	2.77E-06	1.15E+02	NR	2.30E+02	100.0	0.0	0.3	99.7	Cadmium	1									
4 Copper 99.7 0.3 0.0 100. 7.17E+04 NR 3.59E+04 4.89E-04 4.89E-04 0.00E+00 0.00E+00 NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	2.07E-04	3.65E-04	1.52E+04	NR	3.04E+04	100.0	0.0	0.0	100.0	Chromium III	2									
Nervey Image 9.9 0.1 0.0 10.0 3.64E+03 NR 1.82E+03 4.38E+05 0.00E+00 0.00E+00 0.00E+00 NA NA NA NA NA NA 6 Nickel 99.9 0.1 0.0 10.00 1.79E+03 NR 8.94E+02 2.15E+05 1.22E+05 0.00E+00 0.00E+00 NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	2.37E-07	4.18E-07	1.74E+01	NR	3.48E+01	100.0	0.0	1.7	98.3	Chromium VI	3									
A reserve 99.9 0.1 0.0 10.0 1.79E+03 NR 8.94E+02 2.15E-05 1.22E+05 0.00E+00 0.00E+00 NA NA NA NA NA 7 Zinc 99.2 0.8 0.0 10.0 5.06E+05 NR 2.53E+05 6.08E+03 3.44E+03 0.00E+00 0.00E+00 NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	4.89E-04	8.62E-04	3.59E+04	NR	7.17E+04	100.0	0.0	0.3	99.7	Copper	4									
7 Zinc 99.2 0.8 0.0 10.0 5.06±05 NR 2.53±05 6.08±03 3.44±03 0.00±00 0.00±00 NA NA NA NA NA 8 Arsenic 99.9 0.1 0.0 6.05±02 NR 3.18±02 7.63±06 4.32±06 0.00±00 0.00±00 NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	2.48E-05	4.38E-05	1.82E+03	NR	3.64E+03	100.0	0.0	0.1	99.9	Mercury, inorganic	5									
Arsenic 99.9 0.1 0.0 10.0 6.35E+02 NR 3.18E+02 7.63E+06 4.32E+06 0.00E+00 0.00E+00 NAA NA NA NA NA NA 9 Boron 96.9 3.1 0.0 10.0 6.27E+03 NR 3.14E+03 7.54E+05 4.27E+05 0.00E+00 0.00E+00 NAA NAA NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	1.22E-05	2.15E-05	8.94E+02	NR	1.79E+03	100.0	0.0	0.1	99.9	Nickel	6									
9 Boron 96.9 3.1 0.0 10.0 6.27E+03 NR 3.14E+03 7.54E+05 4.27E+05 0.00E+00 0.00E+00 NA NA NA NA NA 10 Selenium 99.4 0.6 0.0 10.0 1.30E+04 NR 6.51E+03 1.56E+04 8.87E+05 0.00E+00 0.00E+00 NA	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	3.44E-03	6.08E-03	2.53E+05	NR	5.06E+05	100.0	0.0	0.8	99.2	Zinc	7									
10 Selenium 99.4 0.6 0.0 10.00 1.30E+04 NR 6.51E+03 1.56E-04 8.87E-05 0.00E+00 0.00E+00 NA NA </td <td>NA NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>4.32E-06</td> <td>7.63E-06</td> <td>3.18E+02</td> <td>NR</td> <td>6.35E+02</td> <td>100.0</td> <td>0.0</td> <td>0.1</td> <td>99.9</td> <td>Arsenic</td> <td>8</td>	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	4.32E-06	7.63E-06	3.18E+02	NR	6.35E+02	100.0	0.0	0.1	99.9	Arsenic	8									
11 Cyanide -208.3 308.3 0.0 100.0 1.58E+03 NR 7.89E+02 1.90E-05 1.07E-05 0.00E+00 0.00E+00 NA N	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	4.27E-05	7.54E-05	3.14E+03	NR	6.27E+03	100.0	0.0	3.1	96.9	Boron	9									
12 Phenol 95.3 4.7 0.0 10.0 3.95E+04 5.01E+01 1.98E+04 4.75E-04 2.69E-04 3.43E-03 6.49E-02 3.68E-02 NA NA NA NA NA NA 13 -	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	8.87E-05	1.56E-04	6.51E+03	NR	1.30E+04	100.0	0.0	0.6	99.4	Selenium	10									
13	NA NA	NA	NA	NA	NA	0.00E+00	0.00E+00	0.00E+00	1.07E-05	1.90E-05	7.89E+02	NR	1.58E+03	100.0	0.0	308.3	-208.3	Cyanide	11									
14 Image: Constraint of the system of th	NA NA	NA	NA	NA	NA	3.68E-02	6.49E-02	3.43E-03	2.69E-04	4.75E-04	1.98E+04	5.01E+01	3.95E+04	100.0	0.0	4.7	95.3	Phenol	12									
15		<u> </u>			<u> </u>	<u> </u>													13									
16 17 17 17 17<																												
17		ļ																										
		ļ				įİ																						
						ļļ				i																		
	<u> </u>																		18									
19 19 19 19 19 19 19 19 19 19 19 19 19 1	ļ	ļ			ļļ	ļ				ļİ																		

CLEA Software Versi			Report generated 29-May-14										Page 5 of 11					
Environment Agency		Soil Dis	tributio	'n	Media Concentrations													
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg⁻¹	mg m⁻³	mg kg⁻¹	mg m ⁻³	mg m⁻³	mg m ⁻³	mg m⁻³		1			1	mg kg⁻¹ FW	1
21 22 23	1	l	Ì															
22					1													
23																		
24			ļ															
25		İ														ĺ		
26																		
27			1															
28																		
29																		
30											[

CLE	A Software Version	n 1.06				Repo	rt generated	29-May-14	ļ				Page 6	of 11					
C.	Environment Agency		Avera	ge Daily Ex	oposure (m	g kg⁻¹ bw c	lay⁻¹)		Distribution by Pathway (%)										
		Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)			
1	Cadmium	1.04E-04	0.00E+00	1.71E-07	6.63E-07	0.00E+00	1.91E-04	2.86E-07	49.69	0.00	0.08	0.32	0.00	0.00	49.77	0.14			
2	Chromium III	1.37E-02	0.00E+00	0.00E+00	8.73E-05	0.00E+00	8.60E-04	3.86E-06	93.49	0.00	0.00	0.60	0.00	0.00	5.88	0.03			
3	Chromium VI	1.56E-05	0.00E+00	0.00E+00	1.00E-07	0.00E+00	9.57E-05	0.00E+00	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00			
4	Copper	3.23E-02	0.00E+00	0.00E+00	2.06E-04	0.00E+00	1.00E-01	9.71E-06	49.83	0.00	0.00	0.32	0.00	0.00	49.83	0.01			
5	Mercury, inorganic	1.64E-03	0.00E+00	0.00E+00	1.05E-05	0.00E+00	1.43E-05	0.00E+00	98.51	0.00	0.00	0.63	0.00	0.00	0.86	0.00			
6	Nickel	8.05E-04	0.00E+00	6.64E-06	5.14E-06	0.00E+00	1.86E-03	8.57E-07	49.10	0.00	0.41	0.31	0.00	0.00	49.82	0.05			
7	Zinc	2.28E-01	0.00E+00	0.00E+00	1.45E-03	0.00E+00	3.86E-01	3.43E-05	33.12	0.00	0.00	0.21	0.00	0.00	33.33	0.00			
8	Arsenic	2.86E-04	0.00E+00	1.42E-05	1.83E-06	0.00E+00	0.00E+00	0.00E+00	94.70	0.00	4.69	0.61	0.00	0.00	0.00	0.00			
9	Boron	2.82E-03	0.00E+00	0.00E+00	1.81E-05	0.00E+00	5.29E-02	5.69E-06	33.10	0.00	0.00	0.21	0.00	0.00	33.31	0.07			
10	Selenium	5.86E-03	0.00E+00	0.00E+00	3.75E-05	0.00E+00	5.00E-04	8.57E-07	91.59	0.00	0.00	0.59	0.00	0.00	7.83	0.00			
11	Cyanide	7.10E-04	0.00E+00	1.17E-04	4.54E-06	0.00E+00	4.29E-03	8.57E-07	28.44	0.00	4.70	0.18	0.00	0.00	33.32	0.03			
12	Phenol	1.78E-02	0.00E+00	8.81E-03	1.14E-04	2.64E-04	5.00E-03	5.71E-04	54.65	0.00	27.07	0.35	0.48	0.32	15.37	1.76			
13																			
14																			
15																			
16																			
17																			
18																			
19													1		1	1			
20					İ							l				İ			

CLEA Software Version	1.06				Repo	ort generated	29-May-14	1				Page 7	of 11			
Environment Agency		Avera	ge Daily Ex	kposure (m	ıg kg⁻¹ bw o	day⁻¹)		Distribution by Pathway (%)								
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)	
21		0 1 10	_ *													
21 22 23		1	Ì	Ì		Ì			1	1		1	1			
23																
24																
24 25												İ				
26																
27		1							1	1			1			
28																
28 29 30																
30				1		1		[1	1	1		[

CLEA Software Version 1.06 Report generated 29-May-14 Pa														Page 8	of 11	
Environment Agency	Oral Heatth Criteria Value (µg kg¹ BW day¹)		maauon reaut onera vaue (µg kg⁻¹ BW day¹)	Oral Mean Daily Intake (µg day ⁻¹)	Inhalation Mean Daily Intake (µg day ⁻¹)	Air-water partition coefficient (K_{aw}) $(cm^3 cm^3)$	Coefficient of Diffusion in Air $(m^2 s^{-1})$	Coefficient of Diffusion in Water $(m^2 s^{-1})$	$\log K_{\infty} (cm^3 g^{-1})$	log K_{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)	
1 Cadmium	TDI	0.36	TDI	0.0014	13.4	0.02	NR	NR	NR	NR	NR	0.001	0.5	1	1	1
2 Chromium III	TDI	150	TDI	0.1	60.2	0.27	NR	NR	NR	NR	NR	0	0.5	1	1	1
3 Chromium VI	TDI	1	ID	0.0001	6.7	NR	NR	NR	NR	NR	NR	0	0.5	1	1	1
4 Copper	TDI	160	TDI	0.286	7000	0.68	NR	NR	NR	NR	NR	0	0.5	1	1	1
5 Mercury, inorganic	TDI	2	TDI	0.06	1	0	NR	NR	NR	NR	NR	0	0.5	1	1	1
6 Nickel	TDI	12	TDI	0.006	130	0.06	NR	NR	NR	NR	NR	0.005	0.5	1	1	1
7 Zinc	TDI	600	TDI	600	27000	2.4	NR	NR	NR	NR	NR	0	0.5	1	1	1
8 Arsenic	ID	0.3	ID	0.002	NR	NR	NR	NR	NR	NR	NR	0.03	0.5	1	1	1
9 Boron	TDI	160	TDI	2.9	3700	0.398	NR	NR	NR	NR	NR	0	0.5	1	1	1
10 Selenium	TDI	6.4	NR	0	35	0.06	NR	NR	NR	NR	NR	0	0.5	1	1	1
11 Cyanide	TDI	12	TDI	0.9	300	0.06	NR	NR	NR	NR	NR	0.1	0.5	1	1	1
12 Phenol	TDI	700	TDI	10	350	40	8.35E-06	7.90E-06	6.36E-10	1.92	1.48	0.3	0.5	1	1	1
13																
14	<u> </u>															
15																
16	į	į				ļ						į	į		į	
17																
18																
19																
20	1											[

CLEA Software Versi	on 1.06		Repo	rt generated	29-May-	14							Page 9 d	of 11
Environment Agency	Oral Health Criteria Value (ug kg ⁻¹ BW day ⁻¹)	Inhalation Health Criteria Value (µg kg¹ BW day¹)	Oral Mean Daily Intake (µg day ⁻¹)	Inhalation Mean Daily Intake (µg day ⁻¹)	Air-water partition coefficient (K _{aw}) (cm ³ cm ³)	Coefficient of Diffusion in Air (m^2s^{-1})	Coefficient of Diffusion in Water $(m^2 \ s^{-1})$	log K _{oc} (cm ³ g ⁻¹)	log K_{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21														
22				1			1							
23														
24														
25														
26														
21 22 23 24 25 26 27									Ì					
28 29 30														
29														
30														

CLEA	Software Versio	n 1.06			Report generated	29-May-14		Page 10 of 11			
R	Environment Agency	Soil-to-water partition coefficient $(cm^3 g^{\prime})$	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for tuber vegetables (mg g ¹ plant DW or FW basis over mg g ¹ DW soil)	Soll-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for the fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	
1	Cadmium	1.00E+02	NR	1.62E+06	0.052 fw	0.029 fw	0.031 fw	0.016 fw	0.0031 fw	0.0014 fw	
2	Chromium III	4.80E+03	NR	5.85E+05	0.00003 fw	0.00003 fw	0.00003 fw	0.00003 fw	0.00003 fw	0.00003 fw	
3	Chromium VI	1.80E+01	NR	2.30E+06	0.0002 fw	0.0001 fw	0.0001 fw	0.09 fw	0.0003 fw	0.09 fw	
4	Copper	1.00E+02	NR	1.38E+06	0.0206 fw	0.0206 fw	0.0206 fw	0.0206 fw	0.0206 fw	0.0206 fw	
5	Mercury, inorganic	5.00E+02	NR	7.40E+04	0.0038 fw	0.0069 fw	0.0043 fw	0.001 fw	0.0011 fw	0.001 fw	
6	Nickel	5.00E+02	NR	2.50E+06	0.0038 fw	0.0043 fw	0.0019 fw	0.0025 fw	0.0025 fw	0.0034 fw	
7	Zinc	3.80E+01	NR	4.32E+06	0.054 fw	0.054 fw	0.054 fw	0.143 fw	0.054 fw	0.054 fw	
8	Arsenic	5.00E+02	NR	1.25E+06	0.00043 fw	0.0004 fw	0.00023 fw	0.00033 fw	0.0002 fw	0.0011 fw	
9	Boron	1.00E+01	NR	6.35E+04	0.4 fw	0.2 fw	0.2 fw	0.2 fw	0.2 fw	0.2 fw	
10	Selenium	5.00E+01	NR	2.17E+06	0.0108 fw	0.00364 fw	0.00083 fw	0.00271 fw	0.003 fw	0.003 fw	
11	Cyanide	1.00E-01	NR	1.00E+05	model	model	model	model	model	model	
12	Phenol	6.27E+00	1.15E+01	8.41E+04	model	model	model	0.00E+00	0.00E+00	model	
13										ļ I	
14											
15											
16											
17											
18											
19											
20											

CLEA Software Version	n 1.06			Report generated	29-May-14				Page 11 of 11	
Environment Agency	coll+to-water partition coefficient (cm ³ g ¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration Soli-to-plant concentration factor for green vegetables (mg g ¹ plant DW or FW basis over mg g ¹ DW soli)	Soil-to-plant concentration factor for root vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soli-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soli -to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soli-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soll)	
21	1									
22 23										
23										
24										
25	1									
26										
27		ĺ	Ì							
28										
29										
30										

APPENDIX D

Contract Number:	S140408	Report Date:	28/05/2014
Client's Reference:			
Client Name:	Solmek 12 Yarm Road Stockton on Tees TS18 3NA		
For the attention of:	Adrian Cutts		
Contract Title:	South Tyneside Hospita	I	
Date Received: Date Commenced: Date Complete:	14/05/2014 14/05/2014 23/05/2014		

Notes:

Samples will be held at the laboratory for a period of 6 weeks after the report date. After the **09/07/2014** all samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Checked and Approved Signitories:

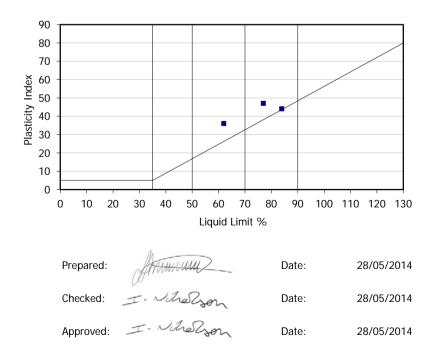
I. Nohelson

l Nicholson (Lab Manager)

12 Yarm Road Stockton on Tees TS18 3NA Tel: 01642 607083 Fax: 01642 612355 e-mail: lab@solmek.com

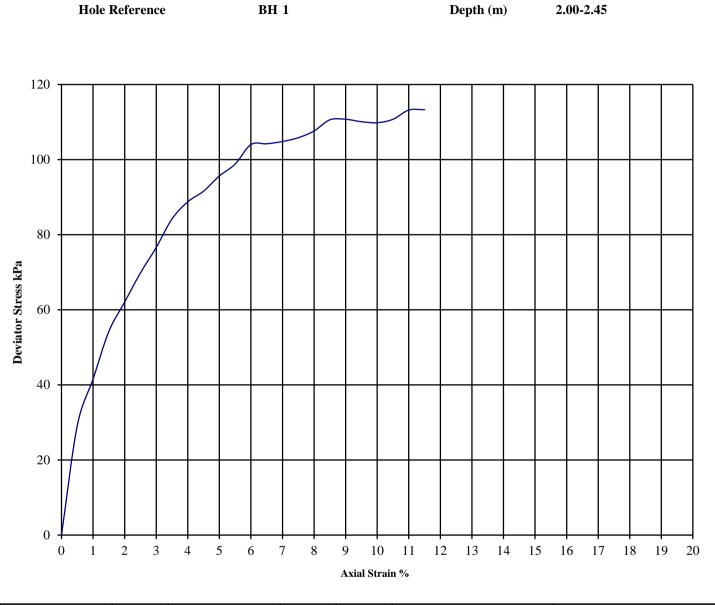
THUMMY,

H Merrick (Assistant Lab Manager)


R Woods (Office Manager)

SUMMARY OF SOIL CLASSIFICATION TESTS (BS1377-2:1990+A1:1996)

SOUTH TYNESIDE HOSPITAL S140408


Hole	Depth m	Type	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	Plasticity	% Passing 425µm	Hd	SO4 Content mg/L	Chloride Content mg/L	Lab Shear Vane kPa
BH1	0.70	В	53	84	40	44	CV	97.8				
BH1	2.00	U	32						8.0	74		
BH2	0.70	В	34	77	30	47	CV	99.9				
BH2	1.20	U	31						7.6	95		
BH3	1.20	U	47									
BH4	1.20	U	36	62	26	36	СН	100				
BH4	3.00	U	35									

		Liquid Limit
CE	Extremely high plasticity CLAY	>90%
ME	Extremely high plasticity SILT	>9070
CV	Very high plasticity CLAY	70 - 90%
MV	Very high plasticity SILT	70 - 9076
СН	High plasticity CLAY	50 - 70%
MH	High plasticity SILT	50 - 70%
CI	Intermediate plasticity CLAY	35 - 50%
MI	Intermediate plasticity SILT	30 - 30%
CL	Low plasticity CLAY	<35%
ML	Low plasticity SILT	< 30 %

Comments			

without measurement of Pore Pressure BS1377-7:1990+A1:1994 [Preparation Method BS1377-1:1990:Clause 8.3]

Diamete	er (mm):	100	Height	: (mm):	200	Test:	100 m	m Single S	Stage.	Sketch of Failure Conditions:
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Shear	
Stage	Content	Density	Density	Pressure	Stress		Strain	of	Strength	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	(kPa)	
1	32	2.09	1.59	40	113	57	11.5	Brittle	57	
Sample D	escription:	Dark brown	n mottled gr	ey orange s	lightly silty	CLAY				
Sample C	Condition:	Undisturbed Rate of Strain %/min 2 Membrane Thickness 0.5r						0.5mm		
Rem	Remarks:									

		Operat	tor	Checked by	Date
		UM		IN	28/05/14
SOLMEK 🎝	South Tyneside Hospital			Contract No S140408	

without measurement of Pore Pressure BS1377-7:1990+A1:1994 [Preparation Method BS1377-1:1990:Clause 8.3]

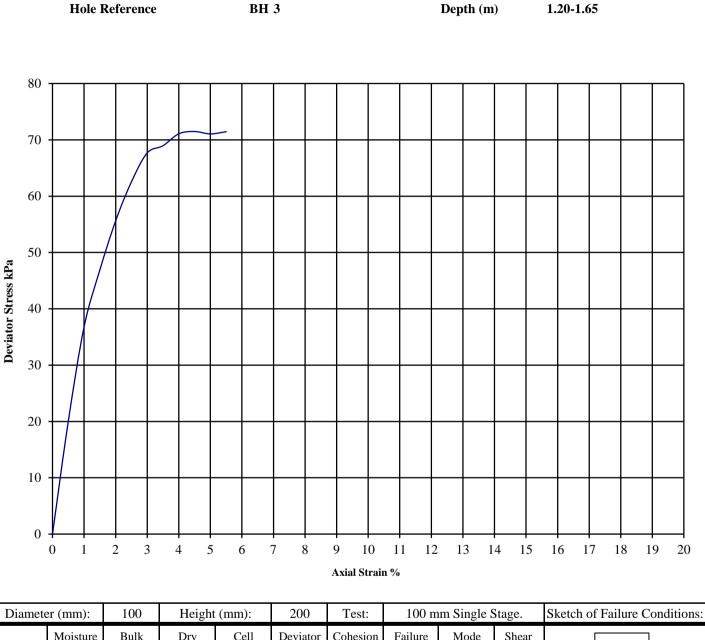
Depth (m)

1.20-1.65

BH 2

Deviator Stress kPa Axial Strain % Sketch of Failure Conditions: Diameter (mm): Height (mm): Test: 100 mm Single Stage. L

Diamen	JI (IIIIII).	100	Incigin	t (mm).	200	Test.	100 II		stage.	SKEICH OF Fai		manuons.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Shear			
Stage	Content	Density	Density	Pressure	Stress		Strain	of	Strength			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	(kPa)			
1	31	2.05	1.56	20	116	58	6.0	Brittle	58			
Sample D	escription:	Brown grey	yish CLAY									
Sample C	Condition:	Undis	turbed	Rate of Stra	ain %/min	2	Membrane	e Thickness	0.5mm			
Rem	arks:											
								Oper	ator	Checked	by	Date
								UN	Μ	IN		28/05/14
				1								


Γ

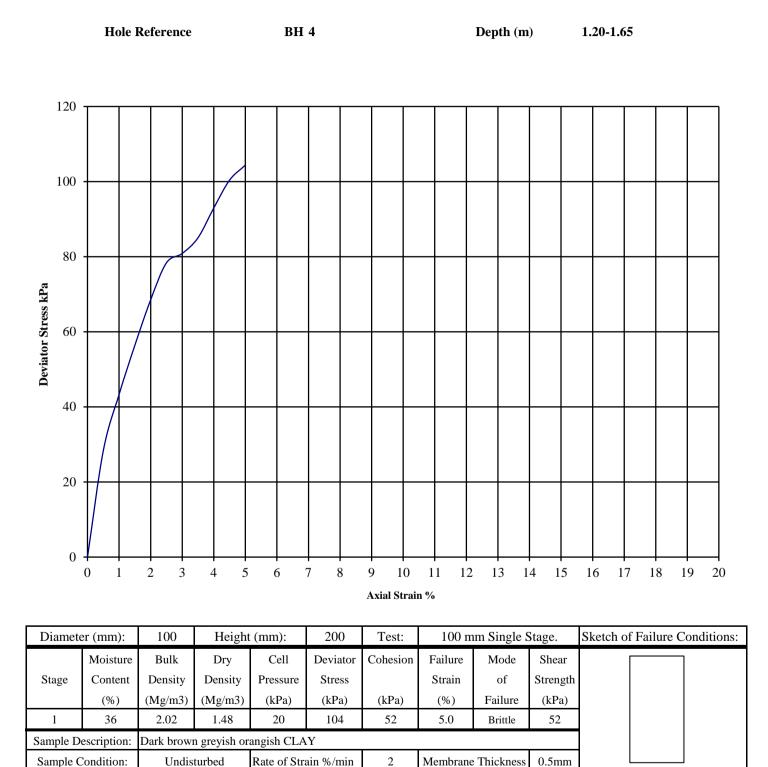
Hole Reference

South Tyneside Hospital

without measurement of Pore Pressure BS1377-7:1990+A1:1994 [Preparation Method BS1377-1:1990:Clause 8.3]

BH 3

	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Shear	ſ		
Stage	Content	Density	Density	Pressure	Stress		Strain	of	Strength			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	(kPa)			
1	47	1.92	1.31	20	71	36	4.5	Brittle	36			
Sample D	escription:	Light brow	n greyish oı	rangish CLA	ΛY							
Sample C	Condition:	Undis	turbed	Rate of Stra	ain %/min	2	Membrane	Thickness	0.5mm			
Rem	arks:											
								Oper	ator	Chec	ked by	Date
								UN	M	1	IN	28/05/14



Hole Reference

South Tyneside Hospital

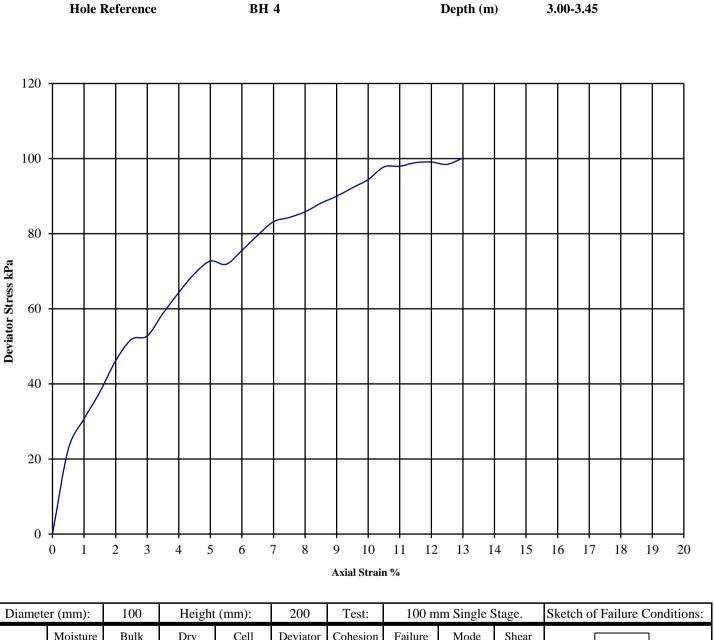
1.20-1.65

without measurement of Pore Pressure BS1377-7:1990+A1:1994 [Preparation Method BS1377-1:1990:Clause 8.3]

Remarks:

 Checked by
 Date

 IN
 28/05/14


Operator

UM

without measurement of Pore Pressure BS1377-7:1990+A1:1994 [Preparation Method BS1377-1:1990:Clause 8.3]

BH 4

	~ /		υ	< <i>/</i>				υ	0			
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Shear]		
Stage	Content	Density	Density	Pressure	Stress		Strain	of	Strength			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	(kPa)			
1	35	2.01	1.49	60	100	50	13.0	Brittle	50			
Sample D	escription:	Dark brown	n slightly si	lty CLAY								
Sample C	Condition:	Undis	turbed	Rate of Stra	ain %/min	2	Membrane	e Thickness	0.5mm	l		
Rem	arks:											
								Oper	ator	Chec	ked by	Date
								UN	M]	IN	28/05/14

Hole Reference

South Tyneside Hospital

3.00-3.45

BRE Digest 365, Figure 2, Page 5 Client: South Tyneside Hospital Site: South Tyneside Hospital Job No: S140408 Pit No: TP1 Test No: 1 CALCULATION OF SOIL INFILTRATION RATE CALCULATION OF SOIL INFILTRATION RATE Time (min) Depth (m) 0 1.19 Depth at start of test (m) = 1.90 O 1.19 2 1.19 Depth at start of test (m) = 1.90 O 1.19 Depth at start of test (m) = 1.90 Time (min) Depth (m) = 1.90 0 1.19 Depth at start of test (m) = 1.90 75% level (m) = 1.190 3 1.19 2 1.19 Solve Effective Depth 0.000 6 1.19 Vp _{75.25} (m ³) = 0.000 0 1.19 8 1.19 8 <t< th=""><th>5</th></t<>	5						
Site: South Tyneside Hospital Image: constraint of the system Job No: S140408 Image: constraint of the system Test No: 1 Pit No: TP1 Test No: 1 Image: constraint of test (m) = 1.90 CALCULATION OF SOIL INFILTRATION RATE Pit Dimensions Length (m) = 1.90 1.90 0 1.19 Pit Dimensions Length (m) = 1.90 1.90 0.5 1.19 Pit Dimensions Length (m) = 1.90 1.90 1 1.19 Pit Dimensions Length (m) = 1.90 1.90 2 1.19 Depth at start of test (m) = 1.190 1.190 3 1.19 Depth at end of test (m) = 1.190 1.190 4 1.19 50% Effective Depth 0.000 1.190 5 1.19 S0% Effective Depth 0.000 1.190 6 1.19 Base area of pit (m ²) 0.855 9 1.19 Base area of pit (m ²) 0.855 9 1.19 Pit Dimesion Pit Dimesion Pit Dimesion 10 1.19	5						
Pit No: TP1 Test No: 1 CALCULATION OF SOIL INFILTRATION RATE Time (min) Depth (m) Pit Dimensions Length (m) = 1.90 0 1.19 Pit Dimensions Length (m) = 0.48 0.5 1.19 Depth at start of test (m) = 1.90 2 1.19 Depth at start of test (m) = 1.190 3 1.19 Depth at end of test (m) = 1.190 4 1.19 75% level (m) = 1.190 5 1.19 50% Effective Depth 0.000 6 1.19 25% level (m) = 1.190 7 1.19 8ase area of pit (m ⁴) = 0.855 9 1.19 Vp_{75-25} (m ³) = 0.000 10 1.19 20 0.855 1.19 20 1.19 From the graph: 25 1.19	5						
CALCULATION OF SOIL INFILTRATION RATE Time (min) Depth (m) Image: Pit Dimensions Length (m) = 1.90 0 1.19 Pit Dimensions Length (m) = 1.90 0.5 1.19 Depth at start of test (m) = 1.90 2 1.19 Depth at start of test (m) = 1.190 3 1.19 Depth at end of test (m) = 1.190 4 1.19 75% level (m) = 1.190 5 1.19 50% Effective Depth 0.000 0.000 6 1.19 25% level (m) = 1.190 7 1.19 Base area of pit (m ²) = 0.855 9 1.19 $Vp_{75.25}$ (m ³) = 0.000 10 1.19 20 1.19 1.19 20 1.19 From the graph: 25 1.19	5						
Time (min)Depth (m)01.190.51.1911.1921.1931.1941.1951.1951.1961.19750% Effective Depth 0.00061.1971.1981.1981.1991.1991.19925% level (m)=1.1925% level (m)=1.19371.1981.1991.1991.1991.1991.1991.1991.1991.1991.1991.1991.1991.1991.1991.1991.1991.19101.19201.19251.19101.19101.19111.19121.19131.19141.19151.19161.19171.19181.19191.19101.19101.19111.19121.19131.19141.19151.19161.19171.19181.19<	5						
01.19Pit DimensionsWidth (m) =0.440.51.19Depth1.5011.19Depth at start of test (m) =1.5021.19Depth at start of test (m) =1.19031.19Depth at end of test (m) =1.19041.1975% level (m) =1.19051.1950% Effective Depth0.00061.1925% level (m) =1.19071.19881.19Base area of pit (m²) =81.19 Vp_{75-25} (m³) =0.000101.19 a_{n50} (m²) =0.85591.19 $Prom the graph:$ 20201.19Trom the graph:0251.19Trom the graph:0	5						
01.19Pit DimensionsWidth (m) =0.440.51.19Depth1.5011.19Depth at start of test (m) =1.5021.19Depth at start of test (m) =1.19031.19Depth at end of test (m) =1.19041.1975% level (m) =1.19051.1950% Effective Depth0.00061.1925% level (m) =1.19071.19881.19Base area of pit (m²) =81.19 Vp_{75-25} (m³) =0.000101.19 a_{n50} (m²) =0.85591.19 $Prom the graph:$ 20201.19Trom the graph:0251.19Trom the graph:0	5						
0 1.19 Width (m) = 0.44 0.5 1.19 Depth (m) = 1.50 1 1.19 Depth at start of test (m) = 1.190 2 1.19 Depth at end of test (m) = 1.190 3 1.19 Depth at end of test (m) = 1.190 4 1.19 75% level (m) = 1.190 5 1.19 50% Effective Depth 0.000 6 1.19 25% level (m) = 1.190 7 1.19 Base area of pit (m ²) = 0.855 9 1.19 $Vp_{75.25}$ (m ³) = 0.000 10 1.19 a_{n50} (m ²) = 0.855 15 1.19 From the graph: 25 20 1.19 Try (m) = 0	-						
1 1.19 2 1.19 Depth at start of test (m) = 1.190 3 1.19 Depth at end of test (m) = 1.190 4 1.19 75% level (m) = 1.190 5 1.19 50% Effective Depth 0.000 6 1.19 25% level (m) = 1.190 7 1.19 8 1.19 8 1.19 7 1.19 8 1.19 0.855 9 1.19 0.000 1.19 0.000 10 1.19 0.000 0.000 0.000 10 1.19 8ase area of pit (m ²) = 0.855 9 1.19 Vp_{75-25} (m ³) = 0.000 10 1.19 a_{n50} (m ²) = 0.855 15 1.19 $From the graph:$ $Z5$ 1.19 20 1.19 $From the graph:$ $Ip 75$ (min) = 0)						
21.19Depth at start of test (m) = 1.19031.19Depth at end of test (m) = 1.19041.1975% level (m) = 1.19051.1950% Effective Depth 0.00061.1925% level (m) = 1.19071.1925% level (m) = 1.19071.19881.19Base area of pit (m ²) = 0.85591.19 Vp_{75-25} (m ³) = 0.000101.19 a_{n50} (m ²) = 0.855151.19From the graph:201.19tp 75 (min) = 0							
3 1.19 Depth at end of test (m)= 1.190 4 1.19 75% level (m)= 1.190 5 1.19 50% Effective Depth 0.000 6 1.19 25% level (m)= 1.190 7 1.19 25% level (m)= 1.190 7 1.19 8 1.19 88 1.19 8 1.19 Base area of pit (m²) = 0.855 9 1.19 Vp ₇₅₋₂₅ (m³) = 0.000 10 1.19 20.000 1.19 0.855 15 1.19 From the graph: 25 1.19 25 1.19 1.19 1.19 1.19							
4 1.19 75% level (m)= 1.190 5 1.19 50% Effective Depth 0.000 6 1.19 25% level (m)= 1.190 7 1.19 25% level (m)= 1.190 7 1.19 Base area of pit (m ²) = 0.855 9 1.19 Vp ₇₅₋₂₅ (m ³) = 0.000 10 1.19 a_{p50} (m ²) = 0.855 15 1.19 From the graph: 1.19 20 1.19 Trop to the graph: 1.19 25 1.19 1.19 1.19							
5 1.19 50% Effective Depth 0.000 6 1.19 25% level (m)= 1.190 7 1.19 8 1.19 8 8 1.19 Base area of pit (m ²) = 0.855 0.000 9 1.19 Vp_{75-25} (m ³) = 0.000 0.000 10 1.19 a_{n50} (m ²) = 0.855 0.855 15 1.19 7 0.855 20 1.19 From the graph: 7 25 1.19 10 10							
61.1925% level (m)=1.19071.1981.19Base area of pit (m²) = 0.855 91.19 Vp_{75-25} (m³) = 0.000 101.19 a_{p50} (m²) = 0.855 151.19 a_{p50} (m²) = 0.855 201.19From the graph:251.19tp 75 (min) = 0							
7 1.19 8 1.19 Base area of pit $(m^2) = 0.855$ 9 1.19 $Vp_{75-25} (m^3) = 0.000$ 10 1.19 $a_{p50} (m^2) = 0.855$ 15 1.19 From the graph: 20 1.19 From the graph: 25 1.19 Image: total state							
81.19Base area of pit $(m^2) = 0.855$ 91.19 $Vp_{75-25} (m^3) = 0.000$ 101.19 $a_{p50} (m^2) = 0.855$ 151.19From the graph:201.19tp 75 (min) = 0							
91.19 $Vp_{75-25} (m^3) = 0.000$ 101.19 $a_{p50} (m^2) = 0.855$ 151.19 $From the graph:$ 201.19 $tp 75 (min) = 0$							
10 1.19 a _{p50} (m ²) = 0.855 15 1.19 From the graph: 20 1.19 From the graph: 25 1.19 tp 75 (min) = 0							
15 1.19 20 1.19 25 1.19 tp 75 (min) = 0							
20 1.19 From the graph: 25 1.19 tp 75 (min) = 0							
25 1.19 tp 75 (min) = 0							
30 1.19 tp 25 (min) = 1							
40 1.19 50 1.19 Soil infiltration rate, f, (m/s) = 0.00E+00 normal to							
60 1.19 Son minimutation rate, 1, (m/s) – 0.00±+00 normal to	st						
90 1.19							
120 1.19 Input by: SJF Date: 06/05/2014							
120 110 Input Syl Col Date: 06/05/2 180 1.19 Checked by: AC Date: 06/05/2							
Time (mins)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)						
0.2							
0.4							
Ê 0.6							
E 0.6 H B 0.8 H B B B B B B B B B B							
1.4							
1.7							

SOAKAWAY DESIGN IN ACCORDANCE WITH BRE DIGEST 365: 1991 BRE Digest 365, Figure 2, Page 5							
Client: South Tyneside							
Site: South Tyneside Hospital							
	S140408	•					
Pit No:	TP4		Test No:	1			
CALCULATION OF SOIL INFILTRATION RATE							
	-						
Time (min)	Depth (m)			Length (m) =	1.40		
0	1.26		Pit Dimensions	Width (m) =	0.45		
0.5	1.26			Depth (m) =	1.80		
1 1.26							
2	1.26		Depth at s	start of test (m) =	1 260		
3	1.26		-	t end of test (m)=			
4	1.26		Deptil d	75% level (m)=			
5	1.26		50%	6 Effective Depth			
6	1.26		507	25% level (m)=			
7	1.26			25% level (III)-	1.200		
8			Bass	area of nit (m2) =	0.620		
	1.26		Base	area of pit $(m^2) =$			
9	1.26			$Vp_{75-25} (m^3) =$			
10	1.26			a _{p50} (m ²) =	0.630		
15	1.26						
20	1.26			From the graph:	<u>^</u>		
25	1.26			tp 75 (min) =			
30	1.26			tp 25 (min) =	1		
40	1.26						
50	1.26 Soil infiltration rate, f, (m/s) = 0.00E+00 normal test						
60 1.26							
90 1.26							
					06/05/2014		
180	1.26	Checked by:	AC	Date:	06/05/2014		
0 0.2 0.4 (J) 0.6 1) 0.8		Ti	me (mins)		30 200		
1.2							
		• • · · ·	• •				
1.4	1						

SOAKAWAY DESIGN IN ACCORDANCE WITH BRE DIGEST 365: 1991 BRE Digest 365, Figure 2, Page 5							
Client: South Tyneside							
Site: South Tyneside Hospital							
	S140408						
Pit No:	TP2		Test No:	1			
CALCULATION OF SOIL INFILTRATION RATE							
	0, (200						
Time (min)	Depth (m)			Length (m) =	1.70		
0	1.75		Pit Dimensions	Width (m) =	0.45		
0.5	1.75			Depth (m) =	1.80		
0.0	1.75			Doptin (iii) –	1.00		
2	1.75		Dopth at	start of test (m) =	1 750		
3	1.75		-	t end of test (m)=			
			Depth a	、 ,			
4	1.75		500	75% level (m)=			
5	1.75		50%	6 Effective Depth			
6	1.75			25% level (m)=	1.750		
7	1.75						
8	1.75		Base	area of pit (m ²) =			
9	1.75			Vp ₇₅₋₂₅ (m ³) =			
10	1.75			a _{p50} (m ²) =	0.765		
15	1.75						
20	1.75			From the graph:			
25	1.75			tp 75 (min) =	0		
30	1.75			tp 25 (min) =	1		
40	1.75						
50	1.75	Soil infiltration	n rate, f, (m/s) =	0.00E+00	normal test		
60	1.75						
90	90 1.75						
120	1.75	Input by: SJF Date: 0					
180	1.75	Checked by:	AC	Date:	06/05/2014		
0 0.2 0.4 0.6 (E) 1.2 1.2 1.4 1.6 1.8		Fin	me (mins)				
2							

APPENDIX E

▲Solmek conditions of offer, notes on limitations & basis for contract (ref: version1/2014)

These conditions accompany our tender and supercede any previous conditions issued. Solmek will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of Solmek. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from Solmek. A charge may be levied against such approval, the same to be made at the discretion of Solmek. Solmek was a trading name of Hymas Geoenvironmental Ltd.

Solmek cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. Solmek are not responsible for the action negligent of otherwise of subcontractors or third parties.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, ground gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Solmek cannot be held liable for any unrecorded or unforeseen obstructions between exploratory boreholes and trial pits. This includes instances where previous structures on the site (buried man made structures) or the presence of boulder clay (cobbles and/or boulder obstructions) have been anticipated. All types of piling operations should make allowance for obstructions within the construction budget to accommodate this. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2001 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, Solmek cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by Solmek in the course of investigation is the property of Solmek, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. Solmek reserve the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. The presence or otherwise of Japanese Knotweed or other invasive plants can be difficult to identify especially during winter months. If Japanese Knotweed or other invasive species are suspect, it should be confirmed by an ecologist. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning Solmek you understand and accept that you/your agent have a contractual relationship with Solmek & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access I and. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Solmek are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete, and Solmek has not allowed for this. No price has been provided or requested for a return visit to remove pipework and covers. Hourly rates apply to consultancy only and do not include expenses unless otherwise shown. If warranties are required, legal costs incurred will be passed on to you assuming Solmek agree to complete such warranties, modified or otherwise and you understand and agree to pay all costs.

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. Solmek are exempt from the CIS Scheme. Solmek offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. Solmek are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by Solmek. Solmek give notice that consequential loss as a direct or indirect result of Solmek's activities or omission of the same are excluded.

SOLMEK NOTES ON CONTAMINATION GUIDANCE(REF: VERSION 1/2014)

UK BACKGROUND

A qualitative approach using the statutory definition of Contaminated land as defined with Section 78A (2) of Part 2A of the Environmental Protection Act has been adopted. This defines contaminated land (DEFRA 'Guidance on the Legal Definition of Contaminated Land', July 2008b) as:

"any land which appears to the local authority in whose area the land is situated to be in such a condition, by reason of substances in, on or under the land, that (a) significant harm is being caused or there is a significant possibility of such harm being caused; or (b) pollution of controlled waters is being, or is likely to be, caused"

"Harm" is defined as harm to the health of living organisms or other interference within the ecological systems of which they form part, and in the case of man, includes harm to his property.

The concept of "significant harm" is dealt with via the Government guidance DEFRA Circular 02/2000 Contaminated Land: "*Implementation of Part IIA of the Environmental Protection Act 1990*". The statutory guidance uses the concept of pollutant linkages set out in Section 2.4 of the circular. Before the Local Authority can make a judgement on whether "*significant harm*" and the significant possibility of harm is being caused they are required to identify a "*significant pollution linkage*". This means effectively that three elements (a **source** of contamination, a relavent **receptor** and a **pathway**) must be present. In statutory terms:

- A **source** is a substance that is in, on or under the land and has the potential to cause harm.
- A receptor is in general terms, is something that could be adversely affected by a contaminant, such as people.
- A pathway is a route or means by which a receptor can be exposed to, or affected by, a contaminant.

Without identification of all three elements together, land should not be regarded as "*Contaminated*" in the statutory sense. Solmek adopts the above measures in accordance with CLR 11 (2004) 'Model Procedures for the management of Land Contamination'.

HUMAN RECEPTORS

Human exposure to contaminants present in soils can occur via several pathways. Direct exposure pathways include dermal absorption after contact with contaminated ground, inhalation of soil or dust, inhalation of volatised compounds, and inadvertent soil ingestion (or deliberate soil ingestion in the case of some children). Other indirect pathways include human ingestion of plants grown in contaminated soil or contaminated ground or surface water. Contaminants associated with wind blown dust can affect humans on surrounding sites.

DEFRA published the discussion paper 'Soil Guideline Values: the way forward' (2006). Following consultation, DEFRA released 'Improvements to Contaminated Land Guidance and Outcome of the Way Forward exercise on Soil Guideline Values' (2008b). From this review DEFRA and the Environment Agency had withdrawn documents CLR 7 to 10 since these no longer fully reflect the new UK approach, along with the associated Soil Guidelines Values (SGV). The Environment Agency have revised and updated information presented in CLR 7 to 10 within two recently published CLEA Framework Reports: Human health toxicological assessment of contaminants in soil (Science Report Final SC050021/SR2) and updated technical background to the CLEA model (Science Report Final SC050021/SR3).

The Environment Agency released the updated CLEA Software Version 1.06 in May 2011 which accompanies the two CLEA Framework Reports and reflects the updated approach. Solmek uses the CLEA Software Version 1.06 to derive a series of Generic Assessment Criteria (GAC) threshold values based on a number of site and soil parameters. Solmek GAC values represent a level at which a risk to human health may exist and are primarily intended as a guide to site redevelopment. Various factors used within the CLEA software by Solmek are summarised below:

Land Use	Receptor	Building	Soil Type	pH and SOM
Residential with Homegrown	Female (Age Class 1-6:	Bungalow	Clay	pH and SOM content
Produce	Young Child)	Small Terraced House	Silty Clay	values as presented
Residential without	Female (Age Class 1-6:	Medium/large Terraced	Silty Clay Loam	from testing.
Homegrown Produce	Young Child)	House	Clay Loam	_
	ũ ,	Semi-detached House	Sandy Lam	
		Detached House	Loam	
Allotments	Female (Age class 1-6:	Assumes None	Silty Loam	
Parks	Young Child)		Sandy Loam	
Open spaces			Sandy Loam	
Playing fields	Female (Age class 4-11: Child)	7	Sand	
Commercial	Female (Age Class 17-17:	Warehouse (pre 1970)		
	Working Adult)	Warehouse (post 1970)		
	č ,	Office (pre 1970)		
		Office (post 1970)		

A number of specific exposure pathways are considered in addition to the above table when considering the generated GAC values. In some instances, the GAC generated value may be presented at the soil saturation limit if this has been exceeded. The choice of receptor may differ from the table above based on professional judgment (with justification).

Solmek adopts a pH value of 7, Soil Organic Matter (SOM) content of 1% and a sandy loam soil where this information is not available. These figures accord with the generic units presented within the CLEA Software. Where Solmek cannot generate specific GAC values, the Environment Agency's SGVs (where available), released from March 2009, and Atkins SSV's (derived using CLEA Software Version 1.04, May 2011) are adopted for comparison.

VEGETATION

Plants can be affected by soil contamination in a number of ways resulting in growth inhibition, nutrient deficiencies and yellowing of leaves. Contaminants are taken up by plants through the roots and through foliage. Contaminants identified as being highly phytotoxic include boron, cadmium, copper, lead, nickel, and zinc.

To establish if the levels of contaminants present on a site may pose a risk to vegetation the results of the contamination testing are compared to a series of threshold values published in 'Code of Good Agricultural Practice for the Protection of Soil'.

GROUNDWATER AND SURFACE WATER RECEPTORS

The principal pathway by which soil contamination may reach the water environment is through a slow seepage or leaching to groundwater or surface water. The potential for contaminants to migrate along such pathways is dependent on the chemical and physical characteristics of the contaminants and the local hydrogeology. Surface watercourses may also accumulate contamination as contaminated sediments are deposited within the water body.

Where the site investigated overlies major/principal aquifers (and in some cases minor/secondary aquifers depending on certain conditions), groundwater Source Protection Zones and areas in close proximity to groundwater abstractions, contamination test results have been compared with the Water Supply (Water Quality) Regulations 1989 and The Water Supply (Water Quality) Regulations 2000.

Should a surface water receptor, such as a fresh water environment (river, canal, stream, lake etc), or marine environment be considered sensitive in relation to a site, then test results are compared with DEFRA & SEPA Environmental Quality Standards (2004). Many of the Environmental Quality Standards are hardness (CaCO₃) depended. Where no hardness values are available, Solmek assume conservative values (of between 0 and 50mg/l).

In the absence of vulnerable ground and surface water environments, Solmek may compare any test results with the Environment Agency Leachate Quality Threshold Values.

DETAILED QUANTITATIVE RISK ASSESSMENT (DQRA)

In line with CLR 11- Model Procedures, a DQRA for groundwater/human health may be required following a Phase 2 investigation and before the preparation of a Phase 3 Remediation Strategy. For human health DQRA, a site specific assessment criteria is undertaken using CLEA Software Version 1.06. For groundwater DQRA, the Environment Agency Remedial Targets Worksheet Version 3.1 is used.

WASTE ACCEPTANCE CRITERIA

Waste Acceptance Criteria (WAC) testing accords with the Landfill (England and Wales) 2002 Regulations and the subsequent amendments set out in Schedule 1 of the Landfill (England and Wales)(Amendment) Regulations 2004. WAC testing was introduced into UK Practise to supplement the revised changes to the Hazardous Waste and Landfill regulations outlined in 2005. The WAC testing relates to materials that are to be exported from a site/development to landfill, and do not directly relate to human health specifically. The WAC test categorises materials as either inert waste, non-reactive hazardous waste, and hazardous waste. The testing results are generally presented as certificates which can be used by site owners/contractors etc, which should be presented to the accepting waste facility or waste contractor.

CONSTRUCTION MATERIALS

Materials at risk from possible soil contaminants include inorganic matrices such as cement and concrete and also organic material such as plastics and rubbers. Acid ground conditions and high levels of sulphates can accelerate the corrosion of building materials. Where pH and soluble sulphate analysis has been undertaken, Solmek compare the test results with the guidelines presented within BRE Special Digest 1, 2005 (3rd Edition) 'Concrete in Aggressive Ground'. Plastics and rubbers are generally used for piping and service ducts and are potentially attacked by a range of chemicals, most of which are organic, particularly petroleum based substances. Drinking water supplies can be tainted by substances that can penetrate piping and water companies enforce stringent threshold values.

REQUIREMENTS OF PARTIES WITHIN THE DEVELOPMENT PROCESS

Interested parties involved in the development process may use the data in different ways and there may be varying views and interpretation of the factual data. Local Authority staff may have a view on contamination and human health and the wider environment. The Environment Agency are concerned principally with the protection of Controlled waters. Building insurers, funders and purchasers may be primarily concerned with issues of potential commercial blight. Purchasers are also not always fully informed, and perceptions on issues associated with risk can affect the decision to purchase. Developers and construction organisations will focus on financial aspects of dealing with the contamination in the context of the development and construction programme.

RISKS & LIABILITIES FROM CONTAMINATION

In simple terms, risks associated with contamination may be considered in terms of 1) statutory risks and 2) development related risks. If contamination is severe or forms a potential hazard based on its potential to affect groundwater, surface water or human health, a statutory risk may be present, and as such, if the risk is not reduced, criminal proceedings may be instigated by a government body or local authority.

If the contamination is less severe or not considered to be mobile, it may be considered a commercial liability which could, in theory remain untreated, but which may at a later date affect the value of the property, or, with changing legislation, become a statutory risk. Commercial liabilities could give rise to civil proceedings by third parties if there are grounds for action.